NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI CLASS 12 (PHYSICS) DPP (Academy) 02/09/2024

- 1. The probability of survival of a radioactive nucleus for one mean life is?
- 2. Two deuterons are moving towards each other with equal speeds. What should be their initial kinetic energies so that the distance of closest approach between them is 2 fm?
- 3. Only 1/8 th of total initial number of active radioactive nuclei of a sample is left after 6 days. Then, in 10 days fraction that decays is?
- 4. The rest mass of the deuteron, ${}_{1}^{2}H$, is equivalent to an energy of 1876 MeV, the rest mass of a proton is equivalent to 939 MeV and that of a neutron to 940 MeV. A deuteron may disintegrate to a proton and a neutron if it
- 5. A stationary ²³⁸ U nucleus decays by a emission generating a total kinetic energy T.

$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}\alpha$$

What is the kinetic energy of the a particle?

- 6. Equal masses of two samples A and B of charcoal are burnt and the activity of resulting carbon-di-oxide from two samples is measured. The gas from sample A gives 10^4 counts per month and that from sample B gives 2.5×10^3 counts per month. The age difference of two samples is (Half life of C^{14} is 5730 years)
- 7. A radioactive sample decays by two different processes. Half life for the first process is t_1 and for the second process is t_2 The effective half-life is
- 8. Consider $X \xrightarrow{-\alpha} Y \xrightarrow{-\alpha} Z$, where half-lives of X and Y are Z year and one month. The ratio of atoms of x and y when transient equilibrium $[T_{1/2}(X) > T_{1/2}(Y)]$ has been established is
- 9. The half life of that radioactive substance, which reduces to 1/64 of its initial value in 15 hours, will be ?
- 10. Consider the plot of N (neutron number) versus Z (photon number) for the different nuclei. Let three nuclides A, B and Care at the positions as shown in the figure. The order of their stability may be

11. The decay constants of a radioactive substance for α and β emission are λ_{α} and λ_{β} respectively. If the substance emits a and beta simultaneously, the

- average half life of the material will be?
- 12. In order to fuse two nuclei, they must be brought at a separation of about 2 fm or less. Let two deuterium nuclei may be brought to fuse together by colliding them with equal and opposite velocities.

 Minimum speed required for above process must be around?
- 13. Two radioactive sources A and B initially contain equal number of radioactive atoms. Source A has a half-life of 1 hour and source B has a half-life of 2 hours. At the end of 2 hours, the ratio of the rate of disintegration of A to that of B is
- 14. A radioactive substance X decays into another radioactive substance Y. Initially only X was present λ_x and λ_y are the disintegration constants of X and Y. N_x and N_y are the number of nuclei of X and Y at any time t. Number of nuclei N_y will be maximum when
- 15. In fission of a $^{235}_{92}U$ nucleus 200 MeV energy is released. To maintain a power output of 5W, fission rate of 215 U must be maintained at
- 16. A radon nucleus $_{86}$ R n 222 of mass 3.6×10^{-25} kg undergoes α -decay. α -particle has mass 6.7×10^{-27} kg and energy 8.8×10^{-13} J the velocity of aparticle is
- 17. The binding energy per nucleon of C-12 is 7.68 MeV and of C-13 is 7.48 MeV. The energy (in MeV) required to remove the extra neutron from C-13 is very nearly equal to
- 18. Let your town's daily requirement is of 950 MW power, which is fulfilled by a 38% efficient nuclear power plant. Mass of fuel ²³⁸₉₂*U* required to meet demand for 1 yr will be (Assume that a total of 200 MeV per fission is obtained)
- 19. A radioactive nucleus is being produced at a constant rate a per second. Its decay constant is λ . If N_0 are the number of nuclei at time t=0 then maximum number of nuclei possible are
- 20. Half-life of a radioactive substance A is two times the half-life of another radioactive substance B. Initially the number of nuclei of A and B are $N_{\rm A}$ and $N_{\rm B}$ respectively. After three half lives of A number of nuclei of both are equal. Then the ratio $N_{\rm A}$ / $N_{\rm B}$ is

NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI CLASS 12 (MATH'S) DPP (Academy) 02/09/2024

- 1. If y=f(x) makes positive intercepts of 2 and 0 unit on x and y axes and encloses an area of $\frac{3}{4}$ sq. unit with the axes, then $\int_0^2 x f'(x) dx$ is equal to
- 2. The area bounded by the cueves $y = log_e x$, $y = log_e |x|$, $y = |log_e x|$, and $y = |log_e |x||$ is,
- 3. The area of the region bounded by the curves y = |x-1| and y = 3 |x| is
- 4. If $I_1 =$

$$\int_0^1 2^{x^2} dx, I_2 \int_0^1 2^{x^3} dx, I_3 \int_1^2 2^{x^2} dx, and I_4 = \int_1^2 2^{x^2} dx, then$$

5. The solution for x to the equation

$$\int_{\sqrt{2}}^{x} \frac{dt}{t\sqrt{t^2 - 1}} = \frac{\pi}{2}$$

is

- 6. The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the ordinates x = 0 and $x = 3\pi/2$ is
- 7. The area of the region enclosed by the curves y = x, x = e, $y = \frac{1}{x}$ and the positive x –axis is
- 8. The area bounded by the curves y = f(x) the x-axis, and the ordinates x = 1 and x = b (b-1) $\sin(3b+4)$. Then f(x) is
- 9. The area bounded by the curves y = |x| 1 and y = -|x| + 1 is
- 10. The area enclosed between the curves $y = ax^2$ and $x = ay^2$ (where a > 0) is 1 sq. unit, then the value of a is
- 11. The area of figure bounded by $y = e^x$, $y = e^{-x}$ and the straight line x = 1 is
- 12. If the area above the x-axis, bounded by the curves $y = 2^{kx}$ and x = 0 and x = 2 is $\frac{3}{\ln 2}$ then the value of k is
- 13. Area inside the parabola $y^2 = 4ax$ between the lines x = a and x = 4a is equal to
- 14. The area (in square units) of the region bounded by x = -1, x = 2, $y = x^2 + 1$ and y = 2x-2 is
- 15. The area of the region described by $\{(x, y)/x^2 + y^2 \le 1 \text{ and } y^2 \le 1 1\}$ is
- 16. The area bounded by parabola $y^2 = x$ straight line y = 4 and y-axis is
- 17. The area of the region bounded by the parabola $y = x^2 + 1$ and the straight line x + y = 3 is given by
- 18. The area between two arms of the $|y| = x^3$ from x = 0 x = 2 is

- 19. The area bounded by $y = \sec^{-1} x$; $y = \csc^{-1} x$ and line x 1 = 0 is
- 20. The area bounded by the curve $y = x e^{-x}$; xy = 0 and x = c where c is the xcoordinate of the curve's inflection point, is

NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI CLASS 12 (CHEMISTRY) DPP (Academy) 02/09/2024

- 1. Why is sulphuric acid not used during tghe reaction of alcohols with KI?
- 2. Among the isomeric alkanes of molecular formula C_5H_{12} , identify the one that on photochemical chlorination yields :
- 3. Which one the following has the highest dipole moment?
- 4. A hydrocarbon C₅H₁₀ does not react with chlorine in dark but gives a single monochloro compound, C₅H₉Cl in bright sunlight. Identify the hydrocarbon.
- 5. Write the isomers of the compound having formula C₄H₉Br
- 6. What are amident nucleophiles? Explain with an example.
- 7. How will you bring about the following conversions?
 - a) Ethanol to but-1- yne,
 - b) Ethane to bromoethane,
- 8. Explain why the dipole moment of chlorobenzene is lower than than of cyclohexyl chloride?
- 9. Give the uses of Freon -12 DDT, carbon tetrachloride and iodoform.
- 10. Explain the mechanism of the following reaction:

$$n-BuBr+KCN \xrightarrow{EtOH-H_2O} n - BuCN$$

- 11. Out of C₆H₅CH₂Cl and C₆H₅CHClC₆H₅ Which is more easily hydrolysed by aq. KOH?
- 12. P- Dichlorobenzene has higher melting point than those of o- and m-isomers . Discuss.
- 13. How the following conversions can be carried out?
 - A) Propene to propan -1-ol
 - B) Ethanol to but -1- yne
- 14. What is the formula of freon -12 and freon -13?
- 15. What happens when n-butyl chloride is treated with alcoholic KOH.
- 16. Give reactants inorganic or organic needed to convert benzyl bromide into:
- 17. How will you convert benzene to monodeutero benzene?
- 18. Propene on treating with Cl₂ at 773K gives allyl chloride . which other reagent can be used for this conversion?
- 19. Haloarenes are insoluble in water but are soluble in benzene.
- 20. Which halogenation reaction is more exothermic and why?

NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI CLASS 12 (BIOLOGY) DPP (Academy) 02/09/2024

- 1. Why flower is a fascenating organ of angiosperms?
- 2. What is issential port of flower labeled diagram of these part
- 3. How many layers are present in the wall of mature microsporangium give its function.
- 4. What is defference between microspore tetrad and pallen grains.
- 5. What is radius of spherical pollen grain draw a lablled diagram.
- 6. What is percentage of angiosperm .pallengrains are shed at this 2celled stage. Give the name of this 2 cell.
- 7. What is importance of pollen tablets
- 8. Give the short notes pollen bank
- 9. Define :- (i) megasporophyll (ii) Megasporangium (iii) syncarpous (iv) Apocarpour
- 10. Draw a labelled diagram of megasporan given
- 11. What is function of synesgids
- 12. Give the function of filiform appasatus of synesgids
- 13. Give the name of larges cell of femal gametophyte.
- 14. Define pollenation
- 15. Define the term (i) autogamy (ii) Geitonogamy (iii) Xenogamy
- 16. What is leiatic agent of pollenation.
- 17. What is abiotic agent
- 18. What is features wind pollenated flower
- 19. What is feature of inscet pollenolet flower
- 20. What is outbreeding devices.